
Ranking Objects by Evaluating Spatial Points
through Materialized Datasets

K.Swathi1, B.Renuka Devi2,

M.Tech Student1, Assoc.Professor2

Vignan’s Lara Institute of Technology & Science

Abstract: Ranking spatial objects can be done based on their
features. Every object has its own features. Based on the
features, the objects could be provided with some scores
likewise identifying scores for each object we could rank them.
For providing scores of objects, if they were of
multidimensional or high dimensional we need to use some
algorithms that could provide the best objects based on their
features. Likewise here we want to rank the spatial objects by
using both their feature and their surrounding objects. For
this purpose, here we use some dominant relationship
algorithm that could give best objects that were dominant
with all the features and then we will find out the best objects
based on their surroundings through distance metric, by using
spatial data structures and feature join algorithm through
hash indexing. By this we can provide best ranked results for
spatial objects.

Keywords: Skyline Points, Materialisation, M-Trees

1. INTODUCTION:
Spatial database systems manage large collections of geo-
graphic entities, which apart from spatial attributes contain
nonspatial information (e.g., name, size, type, price, etc.).
Here presented an interesting type of preference queries,
which select the best spatial location with respect to the
quality of facilities in its spatial boundaries. Ranking the
spatial data can be done by using queries, A spatial
preference query ranks objects based on the features in
their neighborhood. For example if we want to check for a
best residence i.e., for a house we will check some features
like the area, price, area type or so and also we may check
whether there were any hospitals, transportation facilities,
educational institutes, groceries and so. Generally, if we
check for any websites they will provide the list of their
surroundings but wont check for them in that area, so that
here we want to them check them with their latitude and
longitude points by taking their distances.
Ranking spatial data depends on their features and
neighbourhood data points. Here, the search results for
spatial data varies with each of the sites.(for eg:
Googlemaps, bingmaps, mapquest etc:) Ranking of the data
is provided in different ways in Google maps scenario they
have used the relevance, distance and prominence basis.
So, there are two basic ways for ranking objects; Spatial
ranking, which orders the objects according to their
distance from a reference point and Non spatial ranking,
which orders the objects based on their non-spatial values.

2. LITERATURE SURVEY:
For finding the best ranked objects among a set of objects
in the existing systems, the score of each object is defined
in terms of, the maximum quality for each feature in the
neighborhood region and the aggregation of those qualities.
A simple score instance, called the range score, binds the
neighborhood region to a circular region at p with radius r
shown as a circle in Fig.1a. Spatial preference query
integrates these two types of ranking. These provide good
results for many decision making applications.
There is no such existing solution for processing the spatial
preference query. An approach, brute force is used to
evaluate it to compute the scores of all objects and finds out
the top ones. But this method, is to expensive for large
input data sets. So there were some alternative techniques
that are developed at minimizing the I/O accesses to the
object and feature data sets, which were computationally
efficient. These techniques are applied on spatial data
structures, like R-trees and takedown upper score values for
the objects indexed by them, which are used to prune the
search space. Also we can use the branch-and-bound (BB),
feature join (FJ) algorithm referred in[1] for processing the
spatial preference query efficiently.

Figure 1: (a) Range score,(b) Influence score.

Ranking objects is a very important task in various
applications. In relational databases, we rank tuples using
an aggregate score function on their attribute values. For
example, consider a property database that contains
information of multiple values or multidimensional data. If
we want to rank, the top 10 among the tuples, with the large
size and lesser or moderate price. In this case, the score of
each property is taken by the sum of two qualities, size and
price. In spatial databases, ranking is done by nearest

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6458

neighbor (NN) retrieval [5]. Given a query for a property in
some location, which needs to get a set of nearest objects
those qualify a particular condition. These set of objects is
taken to an R-tree, then apply for distance values and
takedown the index in a branch-and-bound [BB] fashion to
get the result.
Also, it is not so easy to use multi-dimensional indexes for
ge t t ing top ones . So for such applications we need to
break them in to high-dimensional spaces. Then top-k
queries have to materialize attributes for combinations
because they are very expensive to create & maintain. Then
it could be taken as distributed database manner where
every attribute will be checked in different databases and
collecting all of them to be unified. So by effective merging
of all the databases result could be obtained but accessing
of the data will be somewhat efficient by obtaining the best
result for each of the attribute.
Here the ranking process goes as follows, first review the
R-tree, which are the most popular spatial access method
and the NN search algorithm. Then, survey our feature-
based spatial queries.
In the following sections, we propose the process for
ranking the spatial data. Section 3.1 gives out the process
of ranking. Section 3.2 explains the spatial access method
used i.e., M-trees. Section 3.3 explains the top-k computing
skyline one scan algorithm that scans the data. Section 3.4
gives the extension algorithm for our proposed system.
Section 3.5 proposes the extension to the computing
algorithm for ranking the data i.e., our exact procedure
using hash tables and FJ algorithm.

3. RANKING SPATIAL OBJECTS:
Ranking the objects can be done by evaluating the spatial
skyline points; the process for ranking will be explained in
the following sections.
3.1 Process of Ranking

1. First we need to identify the places from the data.
2. Then we need to identify the neighbors and have

to construct M-Trees.
3. Apply one scan algorithm of dominant

relationship on data based on the preferred
features to obtain the skyline points.

4. Create feature datasets according to their
distances.

5. Applies Skyline feature join algorithm for the data
that generates hash list according to the features
with their respective locations.

6. After getting the feature data sets, the locations
will be sorted based on scores.

7. Here by adding the hash indexes of each location
we rank the top results.

3.2 M-Trees:
 M-trees [12] are tree data structures that are similar to R-
trees and B-trees. It is constructed using a metric and relies
on the triangle inequality for efficient range and k-NN
queries. While M-trees can perform well in many
conditions, the tree can also have large overlap and there is
no clear strategy on how to best avoid overlap. In addition,
it can only be used for distance functions that satisfy the

triangle inequality, while many advanced dissimilarity
functions used in information retrieval do not satisfy this.

Figure 2: M-Tree

As in any Tree-based data structure, the M-Tree is
composed of Nodes and Leaves. In each node there is a
data object that identifies it uniquely and a pointer to a sub-
tree where its children reside. Every leaf has several data
objects. For each node there is a radius that defines a Ball
in the desired metric space. Thus, every node and leaf
residing in a particular node is at most distance from, and
every node and leaf with node parent keep the distance
from it.

Figure 3: M-Tree For The Locations L1,L2

Materialized Data sets, materialization refers to collecting
the data i.e., confined to some specific details. Suppose we
need to collect only some of the features among the high
dimensional data, we can materialize only those values. So
whenever we are creating an M-Tree we can confine the
features bounding it. So that we reduce the burden on
database but we need to provide the details what data
should be taken and what not. Also there were some more
materialization techniques, partial or full materialization.
Here materialization is used for pairing technique.
Here as proposed in the abstract, a pairing technique could
be provided for the features and the objects, this acts as the
technique. As the M-trees could be developed will two data

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6459

values in the pairs with the feature name and the distance as
it uses the range score or neighborhood retrieval function
for identifying the nearest object also saves it with its
distance.
So that here in the above example l1,l2 are the two
locations all the neighbors to the location are identified
w.r.t M-trees and these are represented in a tree fashion as
l1,l2 are the roots and the neighboring locations were taken
as the leaf nodes w.r.to features. So that, the features could
be identified and can be paired for further use.

3.3 One Scan Algorithm of Dominant Relationship:
Here in this step it identifies the top-k skyline points, which
could be referred from reference [7] A skyline is a subset of
points in the data set that are not dominated by any other
points. Skyline queries, which return skyline points, are
useful in many decision making applications that involve
high dimensional data sets. Given a d-dimensional data set,
a point p dominates another point q if it is better than or
equal to q in all dimensions and better than q in at least one
dimension. Here we apply the dominant relationship
algorithms for obtaining them, the existing algorithms for
computing free skylines cannot be used directly for
computing k-dominant skyline points. Here there are three
novel algorithms, namely, One-Scan algorithm, Two-Scan
algorithm and Sorted Retrieval algorithm, to compute k-
dominant skyline points. Each algorithm takes as input a d-
dimensional data set D (over a set of dimensions S) and a
parameter k, and outputs the set of k-dominant skyline
points in D. Here we use the one scan as it is sufficient for
our process.
One-Scan Algorithm
To compute k-dominant skyline points from an input data
set D (over a set of dimensions S) is similar in spirit to the
nested-loop approach in that it makes one sequential scan
of the data set. The algorithm based on the following two
key properties.

P1. There must exist a free skyline point in D that k-
dominates p.
P2.It is possible for p not to be k-dominated by any k-

dominant skyline point.
Following is the algorithm referred in [7] which provides

the skyline points.
Algorithm: One-Scan Algorithm (D, S, k)

1: sort D in non-ascending order of sum of point’s

dimension values
2: initialize set of k-dominant skyline points R = ∅
3: initialize set of unique non-k-dominant skyline points T

= ∅
4: for every point p ∈ D do
5: initialize isUniqueSkyline = true
6: for every point p_ ∈ T do
7: if (p dominates p_) then
8: remove p_ from T
9: else if (p_ dominates p) or (p = p_) then

10: isUniqueSkyline = false
11: break out of inner for-loop
12: if (isUniqueSkyline) then
13: initialize isDominant = true

14: for every point p_ ∈ R do
15: if (p_ k-dominates p) then
16: isDominant = false
17: if (p k-dominates p_) then
18: move p_ from R to T
19: if (isDominant) then
20: insert p into R
21: else
22: insert p into T
23: return R

So by using the skyline points R, we could get the
particular locations or objects that were perfect for our
spatial query so that we can directly list the objects. So
after obtaining all the skyline points we list the objects with
their features according to M-trees.

Figure 4: D, Listing the Skyline points

3.4 Algorithm for ranking the data
 Here in the proposed algorithm the input we take
is the Skyline points R, resulted from One scan Algorithm
and Features user preferred f).

 Algorithm: Ranking Data(R,f):

1. Initialize RR, a set of k-dimensional values. RR=Ǿ
2. Initialize F, a hash list F=f;
3. Initialize D, D=R.
4. Check all the data in D for the features in F.
5. If(D->f1=feature) then

F1->l1=d1
6. for(D≠NULL)

apply step 5.
7. Insert Result in to F.
8. Sort f1->(data,Score) with score.
9. Apply step 8 for all the features in F.
10. Take D1[index] for all the features in F.
11. Add all the indexes for D data.
12. Apply step[11] for all the data D.
13. Insert result in to RR .
14. Sort RR for ranked result.
15. Result RR.

The result RR provides the ranked order for the skyline
points. The following section explains the Process of the
algorithm.

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6460

3.5 Extending the algorithm for Ranking Objects:
Creating feature data sets refers to creating object sets for
each feature. For this we use the Feature Join Algorithm.
Then we need to place them in a hash table.
Feature Join Algorithm:
This is also a method for evaluating preference query to
perform a multi-way spatial join on the features f1, f2,
f3….fn to obtain combination of feature points which can
be in the neighborhood of objects from R. Spatial regions
which correspond to combinations of high scores are then
examined, in order to find data objects in R having the
corresponding feature combination in their neighborhood.
Here we first take the combinations i.e., location for each
feature. Then we need to place all the location for that
feature f1{
l1,l2,l3…ln},f2{l1,l2,l3…ln},…fn{l1,l2,l3…ln}. Here after
creating datasets, we need to create a hash table for all the
features with user preference as a hash function i.e., priority
of user. Then the buckets for each of the hash entry will be
the locations which are placed according to their distance in
the minimum distance order. This could be represented in
the following,

Figure 5: H, Listing the features in hash table according to

Join Feature Algorithm

So that all the features f1, f2, f3, f4,.. fn are listed in the
hash Table. The locations for the feature f1 are entered in to
their buckets, which are entered based on their distance, but
here the distance is confined to some range as we selected
the neighbors using Range Query in M-Trees.
So that, the locations were again sorted according to their
feature scores that were given by some rating mechanism
which were not discussed here.
Ranking the objects:
Here ranking the objects can be done by adding the indexes
of the location in all the feature buckets. So that by
collecting all the indexes added for each location for every
feature, we get the position for each location. So that by
sorting all the results we could rank the locations. So
according to the ranking order the locations will be ranked.

Figure6: Ranking the locations.

The ranking of the locations can be described as follows:
F1-->L1[i], f2-->L1[i], f3-->l1[i],……fn-->l1[i]; Here i
,refers to indexes of that location.
Here we need to take all the indexes and add them as
follows:
 index , i[f1-->l1]+i[f2-->l1]+ i[f3-->l1]+ i[f4--
>l1]+…..i[fnl1]=n1., like wise adding all the indexes we
could get their position scores. Take the result in to RR.
Sort the data in RR, according to their added index scores.
So that we could say which one’s position score is less it
could be ranked first as best location. Here, as we use the
skyline points there is no problem in checking all the
features. As all the locations or the points that were taken
will possess all the locations or all the features that are
needed.

4. RESULTS:
The proposed algorithm is applied on a database which had
more than 500 entries with their latitude and longitude
points. Which was the data taken from Texas, Lubbock
wells information as we mostly needed the latitude and
longitudinal data as we need to check on large data. So, that
to check the time it takes. We have made some changes for
the data like hotels and some as the features that we need.
First displays the full data

The following displays the hotels with some score specified
above some value and their neighbors to a particular
location.

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6461

The following displays the best hotels in that area ranked.

To check the accuracy we have applied the proposed
algorithm, on Google maps ranked data. So far the results
were merely accurate.
The following display the result from Google Maps for
searching hotels in Tenali. As Google uses the relevance,
distance and prominence criteria’s.

The following displays the ranked results from the data
gathered through Google maps. We had taken the result
from Google and worked out with the features like bus
stand and railway station, nearer to the hotels w.r.to
Latitude and Longitude points and also the scores of hotels
in the area.

The following provides the resultant for visualization on
maps using the ARCGIS online tool.

5. CONCLUSION:
By materializing all the dimensions one by one here in the
computing algorithms, the skyline points could be accurate.
Also the extension algorithm provides the most useful
skyline points that makes useful to make the right decision.
Here in the paper we have given the ranking extension to
the skyline point retrieval algorithm by computing the
skyline points using Feature join algorithm and Hash tables
by materializing using the M-Trees. By using the entire
proposed algorithm the results could be as they check all
the surrounding places to it by using M-Trees so that to
make right decision.

6. FUTURE ENHANCEMENT:
The extension to this paper can be done by identifying the
area of the location for any purpose suppose we need an
area of 5 acres of residential area or so, by using the Pattern
recognition techniques like chain coding. So that we can
identify an area in a map and those could be ranked using
the ranking techniques.

REFERENCES:
1. Man Lung Yiu; Hua Lu; Nikos Mamoulis; Vaitis, M., "Ranking

Spatial Data by Quality Preferences," Knowledge and Data
Engineering, IEEE Transactions on , vol.23, no.3, pp.433,446,
March 2011

2. Evaluating Top-k Skyline Queries over Relational Databases,
Database and Expert Systems Applications,Lecture Notes in
Computer Science Volume 4653, 2007, pp 254-263

3. Lijiang Chen; Bin Cui; Hua Lu, "Constrained Skyline Query
Processing against Distributed Data Sites," Knowledge and Data
Engineering, IEEE Transactions on , vol.23, no.2, pp.204,217, Feb.
2011

4. Yong Sung Kim; HaRim Jung; Min Kyung Sung; Yon Dohn Chung,
"On processing scored k-dominant skyline queries," Electrical and
Control Engineering (ICECE), 2011 International Conference on ,
vol., no., pp.4834,4837, 16-18 Sept. 2011

5. Xin Lin; Jianliang Xu; Haibo Hu, "Range-Based Skyline Queries in
Mobile Environments," Knowledge and Data Engineering, IEEE
Transactions on , vol.25, no.4, pp.835,849, April 2013

6. Skyline computation, by jian wen, in
CSG399:http://www.ccs.neu.edu/home/jarodwen/materials/skyline_
pre.pdf

7. Extract interesting skyline points in High Dimension, Database
Systems for Advanced Applications,Lecture Notes in Computer
Science; Volume 5982, 2010, pp 94-108

8. Fung, G.P.C., Lu, W., Du, X.: Dominant and k nearest probabilistic
skylines. In: Proceedings of the 14th International Conference on
Database Systems for Advanced Applications, DASFAA 2009

9. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6462

computation using object-based space partitioning. In: Proc. of the
35th SIGMOD International Conference on Management of
Data(SIGMOD 2009)

10. Efficient Processing of Top-k Dominating Queries on Multi-
Dimensional Data, VLDB ‘07, September 23-28, 2007, Vienna,
Austria.Copyright 2007 VLDB Endowment, ACM 978-1-59593-
649-3/07/09

11. M.L. Yiu, X. Dai, N. Mamoulis and M. Vaitis, "Top-k Spatial
Preference Queries," Proc. IEEE Int',l Conf. Data Eng. (ICDE)

12. Guttman, "R-Trees: A Dynamic Index Structure for Spatial
Searching," Proc. ACM SIGMOD

13. Junyi Chai; Liu, J.N.K.; Man Lung Yiu; Hongwei Wang; Anming Li
"A Novel Dynamic Skyline Operation for Multicriteria Decision

Support", System Sciences (HICSS), 2013 46th Hawaii
International Conference on, On page(s): 1183 – 1192

14. Beomseok Nam; Sussman, A. "DiST: fully decentralized indexing
for querying distributed multidimensional datasets", Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International

15. Beomseok Nam; Sussman, A. "Spatial indexing of distributed
multidimensional datasets", Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, On page(s): 743 -
750 Vol. 2 Volume: 2, 9-12 May 2005

K.Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6458-6463

www.ijcsit.com 6463

